Sunday, June 21, 2020
Thursday, June 11, 2020
Network Security Essay Topics for the B.S. Degree
Network Security Essay Topics for the B.S. DegreeNetwork security essay topics for the B.S. degree can help you improve your chances of landing the degree. You will find that there are several essay topics that will help you to answer the research questions that will help you to demonstrate your understanding of the topic.One of the security essay topics is about how security works in a business environment. How do security teams work? The writer must explain what it means to work with a security team and how security teams are involved in the security plan. The team must be able to communicate clearly, meet deadlines, and plan ahead so they can make sure everything is prepared before the day of the event.Security teams have different responsibilities. They can be a police force or a prison force. If the work being done requires police force, the writer must explain how the police force works, how the police are used, and how an individual needs to get the police there. Security team s are involved in crime prevention and solving crimes. If the security team is used for crime prevention, the writing must focus on how to make sure that the work does not interfere with the way the work is done.If the work is related to crime prevention, the writer must explain how the team works with the police force and how they keep crime from happening in the first place. If the team takes a position against the illegal activities that are occurring, the writing must show how the team works with the police force and how the team keeps crime from happening. These are the types of situations where an essay topic like this will prove useful.On the other hand, if the security team does not do anything illegal, then the essay topic has to show how the team gets their information, when they get their information, and how they are organized. They should discuss how the information is sent to the police and how they use the information in the event of an emergency. If the police are in volved, the essay must include how the police respond to the information and how the team works with the police. It must also talk about what happens when the police are not available and how the team decides whether or not to work with the police to solve a crime or not.Network security teams can also be used to provide security at schools. The writer must show how the security teams organize themselves and how they keep their work organized. They must also show how the information is being sent to the school for police purposes. In addition, the security team must be responsible for keeping the school safe, working to create and maintain a security plan, and keeping their work and structure organized.How does the college campus become secure? This can be answered with a series of essays on this topic. An essay topic like this will help the student to show how the school's security is planned, its composition, and its objectives. An essay topic like this will help the student to do all of this without disrupting the work that they are doing. This will allow the student to continue his or her work while the essay topic is being completed.Finally, there are topics that focus on the analysis of the security team. The writer must show how the organization of the security team works, how the security team communicates, and how the security team is organized. There are many security essay topics to consider, and they can help to improve your chances of getting your degree. Consider a writer's guide before starting any project in order to choose a topic that will make a difference in your academic career.
Tuesday, June 9, 2020
What is a Limit, Anyways Mathematical Concepts Explained
Letââ¬â¢s talk about a concept that can be confusing when youââ¬â¢re first studying calculus: limits. When youââ¬â¢re first introduced to limits, youââ¬â¢ll often hear your professor say things like,ââ¬Å"What is the limit of f(x) = as x approaches 5?â⬠When worded like that, limits donââ¬â¢t sound very natural or intuitive ââ¬â but in todayââ¬â¢s post, Iââ¬â¢m going to convince you that limits are a very natural way of looking at the world. Iââ¬â¢ll also go over some examples of limits that we can solve without doing any ââ¬Å"mathâ⬠at all! An Example: Riding a Bike Letââ¬â¢s start with an example. Imagine that you are watching your friend ride her bike along a smooth surface, and that you are drawing a graph of the position of her bike as a function of time. The graph might look something like this: Now, letââ¬â¢s say that as you continue drawing the graph, you momentarily look away from your friend, so you miss where she is at the time 4 seconds. So your graph now has a ââ¬Å"holeâ⬠in it, at the moment that you looked away. Even though you donââ¬â¢t know for sure where your friend was at 4 seconds, can you guess where she was? Sure you can ââ¬â she was probably at 10 feet. How do you know? Because right before 4seconds, she was just less than feet, and right after seconds, she was just past 10 feet. Unless she was magically transported at the exact moment you looked away, she must have gone through 10 feet for the graph to make sense. Limits are simply this very obvious idea ââ¬â that you can ââ¬Å"guessâ⬠what values a function takes at a point, based on what value it takes at neighboring points. When you see an expression like: You should think to yourself: hmm, what value would I guess the function f(x) to take when x is about h, based ONLY on values that the function takes CLOSE to h? (The arrow in the expression just means ââ¬Å"approachesâ⬠). If f(x)is the position of your friend at time x, then I want to point out that that the function doesnââ¬â¢t have to be linear for you to to be able to take limits. Letââ¬â¢s consider a different example, where your friend is riding her bike again, but now is slowing down, as she reaches a stop sign. The graph of her position might look something like this (this is definitely not a linear function!): In this graph, your friend starts out driving very quickly, but rapidly slows down, starting at at around half a second. Again, even though we ââ¬Å"looked awayâ⬠at x=4, and so the function f(x)is undefined at that point, we can still evaluate the limit. In this case, Limit to Infinity So weââ¬â¢ve seen so far that limits allow us to ââ¬Å"guessâ⬠the behavior of functions at those points where we donââ¬â¢t know the exact value of the function, for whatever reason. Often times, we are interested in knowing what value a function will take at infinity. We canââ¬â¢t graph a function all the way to infinity, and neither can we ââ¬Å"plug inâ⬠infinity into a formula to evaluate the answer directly. It turns out that this is another case where limits can help us out. Remember, limits are our best ââ¬Å"guessâ⬠of how a function will behave based on the points we do know. So for example, if we look at that last graph again (reproduced below) ââ¬â when your friend is approaching a stop sign ââ¬â we might ask, ââ¬Å"if she continues her current trajectory, where will she end up after an infinite amount of time?â⬠In this case, it might be reasonable to say that there seems to be an asymptote at 10 feet. The idea here is that your friend is slowing down, slowing down, and eventually, she will grind to a stop right at the stop sign, located at about 10 feet. If the function doesnââ¬â¢t change (in other words, she doesnââ¬â¢t start biking again), then her position after an infinite amount of time will be10 feet. In mathematical language, we write this as: Limits to infinity are a little bit different than limits at a finite point ââ¬â instead of looking at neighboring values, we instead look at the general trend of a function, f(x), and try to guess where the function will end up as becomes larger and larger. Sometimes the limit of a function at infinity may be positive or negative infinity! Can you figure out what the limit of the first (topmost) graph is, as ? When the Limit Doesnââ¬â¢t Exist There are also cases where the limit doesnââ¬â¢t exist (or you might hear that the limit is undefined). Hereââ¬â¢s an example of a case like that: What would you say is the limit when ? It depends where you look! If you look at times smaller than 4 seconds, it would seem that she would be at 8 feet, but if you look at times greater than 4 seconds, it would seem that she would be at 11 feet! When you have contradictory guesses, you can say that the limit simply doesnââ¬â¢t exist. Of course, in most real-world situations, this doesnââ¬â¢t happen! For the limit to not exist, you friend must have magically transported from 8 feet to 11 feet at the exact moment you werenââ¬â¢t looking! The power of limits is that they accurately describe most real-world functions, which are continuous and smooth. Wow, Are Limits That Simple? Yup, thatââ¬â¢s all there is to the concept of a limit. In reality, you usually wonââ¬â¢t be given graphs from which to evaluate limits. Instead, youââ¬â¢ll be given mathematical functions, from which you will have to determine what neighboring values are, next to the point that youââ¬â¢re interested in. There will be cases where neighboring values take contradictory values, and the limit isnââ¬â¢t defined. In other cases, you will have to consider whether asymptotes exist in a problem, as you decide what values functions approach at positive or negative infinity. But hopefully, now that you have a concrete picture in mind, youââ¬â¢ll be able to tackle these problems with confidence! Abu is one of our incredible mathematics tutors in Cambridge. If you're interested in working with him in Cambridge or online, you should contact us today! ; Are you looking for more content on mathematics? Check out some of our previous blog posts below! Data Science and Intuitive Mathematics Why logarithms are actually useful: Simplifying Arrhenius temperature dependence using log tricks Converting Polar to Cartesian Equations in Five Easy Steps
Subscribe to:
Posts (Atom)